Wi-Fi Connected Locker Access System

May 15-25

Faculty Mentor and Client: Lee Harker

Team Members: Nathan Castek, Corey Cazzato, Nathan Lafferty, Priyank Patel, Mohammad Syazwan

Introduction

Team Lead: Nathan Castek (EE)

WebMaster: Corey Cazzato (CPRE)

Team Communicator: Nathan Lafferty (CPRE)

Key Concept Holder: Priyank Patel (EE)

Technical Lead: Mohammad Syazwan (EE)

Problem Statement

- Current Lockers are:
 - Difficult to manage
 - Must manually assign lockers, rearrange locks
 - High administrative overhead to adding new users
 - Insecure
 - Padlocks w/ same lock shared year by year

Proposed Solution

- Wi-Fi connected locker access system
 - Remotely-Managed
 - Battery-powered
 - Significantly Reduced administrative overhead
 - Secure

Detailed within this presentation

Conceptual Sketch

Functional Decomposition

- 1. MCU and LCU
- 2. Power System
- 3. Communication Platform
- 4. Locking System
- 5. CLI (Command Line Interface)

Functional Requirements

- Read student's ISU ID Card
- Keyboard
- Allow administrative functionality
- Wireless transmitters
- LCU ("Locker Control Unit") shall be secure
- The MCU must store usernames/passwords/groups of users, and be easy to remotely manage to alter information
- The MCU must be "locked-down"

Non-Functional Requirements

- LCU shall be battery-powered and last a minimum of two full semesters
- The LCU batteries should supply at least 4 volts of power until shutdown event
- The LCU, low-power, red LED shall illuminate every 5 seconds when batteries are below 10% power
- The LCU green LED shall illuminate when the locker has been unlocked.
- The servo should be able to hold open the lock for at least 10 seconds
- The locker shall re-lock 10 seconds after it has been unlocked.
- The LCU shall have a physical key that will manually unlock the lockers for cases in which batteries have died
- The LCD display on the MCU shall display when locker batteries are below 20% and are in need of replacement
- The MCU must connect to Iowa State public Wi-Fi, and must automatically connect after a reboot
- The MCU must allow incoming SSH connections
- The MCU must reject foreign input
- The MCU must display a status report on valid administrative SSH login
- The MCU must be able to control lockers a maximum of the distance of the room

Technical Constraints/Considerations

• Power

- Source (See scenario calculations in references)
- Sleep functions
- Size
- Timing
 - Circuitry delays

Market Survey

• Similar items currently on market

- automated keyless access
- ID card , scanner
- LCD screen
- AC power sockets
- Not remotely managed
- Expensive
- Not tied to Iowa State's Network

Potential Risks & Mitigations

- Public Wi-Fi
 - Security Risks, MitM attacks, brute-force cryptohacking
- The cost of the project
- Physical damage to the components
 - wear and tear of locker, abuse of MCU
- Transmissions over wireless
- Electrical equipment may be subject to failure
- Battery-Life Duration

Resource Cost & Estimate

- Labor
 - 5 Engineers (~30hrs/week)
- Parts LCU
 - Each unit will cost around \$50 (see BOM on next slide)
- Parts MCU
 - One main control unit will cost around \$125 (see BOM on next slide)

Total cost for 30 locker system: \$1625

Resource Cost & Estimate (Cont.)

Locker Control Unit BOM							
Quantity	Part Number	Part Name	Price (\$)/Unit				
1	ATMEGA328-PU-ND	ATMEGA328	2.74				
1	160-1057-ND	Bi-Colored LED	0.28				
2	CF14JT100RTR-ND	100Ω Resistors	0.005				
1	CF14JT10K0TR-ND	10kΩ Resistor	0.004				
1	CTX1085-ND	16MHz Crystal	0.27				
2	BC1034CT-ND	18pF Capacitors	0.25				
2	CF14JT100RTR-ND	Resistors (servo tran)	0.005				
1	900-00005-ND	Servo	12.99				
1	2N3906-APCT-ND	PNP Transistor	0.15				
1	MC7805CT-BPMS-ND	Voltage Regulator L7805	0.35				
1	497-12822-5-ND	Voltage Regulator LD1117V33	0.63				
1	80-C330C334K5R	0.33µF Capacitor	0.49				
1	P4725-ND	0.1µF Capacitor	0.19				
1	P14373-ND	100µF Capacitor	0.15				
1	P10425TB-ND	10μF Capacitor	0.04				
1	XB24-AWI-001-ND	Xbee Series 1	19				
1	T97B440003	Lock	7.7				
AR	N/A	Wire	0				
AR	N/A	Metal Fasteners	0				
1	ID830	Battery Pack	2.95				
4	N/A	AA Alkaline Energizer M AX Batteries	0.8				
.		Total Price	51.644				

Main Control Unit BOM						
Quantity	Part Name	Price (\$)/unit				
1	Raspberry PI	40				
1	Keyboard	12				
1	Card Reader	12				
1	Display	30				
1	Xbee Series 1	19				
1 Wi-Fi Chip		10				
	Total Price	\$123				

Project Milestones & Schedule

Task Name 🗸 🚽	Duration 🖕	Start 🖕	Finish 🖕	14	Sep 2	1, '14	Nov	9, '14	De	c 28,	'14	Feb 1	5, '15	Apr 5,	'15
				F	S	S	M	Ť	W	T	F	S	S	M	T
Research and Design System	50 days	Mon 9/8/14	Fri 11/14/14				1								
Sub-system Testing	24 days	Wed 10/1/14	Sat 11/1/14		C										
System Testing	101 days	Sun 11/2/14	Fri 3/20/15										-1		
Prove System will Function with 3 Units	20 days	Mon 11/24/14	Fri 12/19/14				ľ		1						
Order Parts	17 days	Sat 12/20/14	Sun 1/11/15						ς						
Mechanical Design	50 days	Mon 1/12/15	Fri 3/20/15							[-1		-
Admin Controls and UI	35 days	Mon 1/12/15	Fri 2/27/15							C					
Implement System Security	16 days	Fri 2/27/15	Fri 3/20/15									C	1		
Verification Testing	50 days	Mon 1/12/15	Fri 3/20/15							[-1		
System Documentation	30 days	Mon 3/23/15	Fri 5/1/15										C		

System Design

MCU and LCU LCU units "slaved" to MCU Single MCU "master"

System Design (LCU)

- Atmega328 processor
- XBee series 1
- Servo motor
- Bi-LED
- Battery pack
- Lock

Detailed Design LCU

System Design (MCU)

Hardware and Software components

- Designed around simplicity
 - Raspberry Pi Model B+
 Running "Rasbian" OS
 - Xbee (defined earlier)
 - Generic QWERTY Keyboard
 - Generic RCA LCD screen (also supports HDMI)
 - Remotely Managed with SSH and Command Line Interface

Detailed Design (MCU)

- No Graphical User Interface
- LCD renders simple form with text input
- Card swipe will emit an audible sound on valid card swipe
- Remote Management Software
 - Connected over SSH
 - Ran over command-line interface

 a/e, "add-user lafferty 012345678 randomPassword"

Software Technology

- Still debating on benefits of data design
 - Database vs text stores
- Schema is a form of REST
 - add-user, update-user, remove-user, add-group, removegroup
- Remote-Management security provided with SSH
- MCU <-> LCU communication secured using SSL
- Actual code is written in Python scripting
 - Rasbian comes default with Python
 - Can interface with XBee units with ease
 - Easy to access data stores and serial interfaces

- Atmega328
 - 8-bit microcontroller
 - control servo, XBee, LED
 - 1.8 to 5.5V

Atr	nega328
(PCINT14/RESET) PC6 [1	28 PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PD0 2	27 PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1 C 3	26 C PC3 (ADC3/PCINT11)
(PCINT18/INT0) PD2 C 4	25 C PC2 (ADC2/PCINT10)
(PCINT19/OC2B/INT1) PD3 C 5	24 C PC1 (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 C 6	23 PC0 (ADC0/PCINT8)
VCC 7	22 🗆 GND
GND 🗆 8	21 AREF
(PCINT6/XTAL1/TOSC1) PB6 2 9	20 AVCC
(PCINT7/XTAL2/TOSC2) PB7 [10	19 PB5 (SCK/PCINT5)
(PCINT21/OC0B/T1) PD5 [11	18 DPB4 (MISO/PCINT4)
(PCINT22/OC0A/AIN0) PD6 [12	17 PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7 [13	16 - PB2 (SS/OC1B/PCINT2)
(PCINT0/CLKO/ICP1) PB0 [14	15 D PB1 (OC1A/PCINT1)

- Xbee Series 1
 - Low power
 - Low cost
 - 300 feet range
 - 3.3 V

Battery

 Energizer (AA)
 supply voltage to LCU

		Ð	
	-		14.50 (0.571) 13.50 (0.531)
	5.50 (0.217) — Maximum		1.00 (0.039) Minimum
		(+)	1
			50.50 (1.988) 49.50 (1.949)
t			
1			
86	1	(-)	
)2	0.10 (0.004)		
02	0.10 (0.004) Typical	-	— 7.00 (0.276) Minimum

mm (inches)

Battery Types	Туре	Voltage	Capacity(mAh)	Cost/8 pk	Capacity/cost	
Energizer Ultimate lithium	Lithium/Iron Disulfide (Li/FeS2)	1.5 V	3000	\$18.99	157.9778831	
Energizer max	Alkline	1.5 V	2779	\$6.39	434.8982786	
Energizer power plus(rechargable)	NiMH (nickel-metal hydride)	1.2 V	2300	\$33.94	67.76664702	

References

Power Calculations

	Scenario Definitions						
		LCU Checks					
	LCU looks for signal	Battery	Locker Opens				
	from MCU every 'x'	Status Every	Every 'x'				
		'x'					
Scenario 1	5 seconds	1/week	0/week				
Scenario 2	5 seconds	1/week	2/week				
Scenario 3	5 seconds	1/week	6/week				
Scenario 4	5 seconds	1/week	8/week				
Scenario 5	5 seconds	1/week	14/week				
Scenario 6	5 seconds	1/week	28/week				

		Scenario Calculations							
	Current Draw (mA)	Time (hours)	Electric Power Over Time (mAh)	How many academic semesters with 4AA battaries?					
Scenario 1	0.155904514	2688	419.0713347	25.77126877					
Scenario 2	1.006373505	2688	2705.131981	3.992411489					
Scenario 3	1.027328477	2688	2761.458947	3.91097612					
Scenario 4	1.037805964	2688	2789.622431	3.871491669					
Scenario 5	1.069238426	2688	2874.11289	3.757681209					
Scenario 6	1.142580835	2688	3071.257284	3.516475176					

Power Calculations (cont.)

	ATMEGA328 Calculations					
			Electric			
	Current Draw (mA)	Time (hours)	Power			
	Current Draw (mA)	Time (nours)	Over Time			
			(mAh)			
Scenario 1	3.50529E-09	2688	9.4222E-06			
Scenario 2	0.840006967	2688	2257.93873			
Scenario 3	0.840020195	2688	2257.97428			
Scenario 4	0.840026808	2688	2257.99206			
Scenario 5	0.84004665	2688	2258.04539			
Scenario 6	0.840092946	2688	2258.16984			

	Xbee Calculations					
			Electric			
	Current Draw (mA)	Time (hours)	Power			
	Current Draw (mA)	Time (nours)	Over Time			
			(mAh)			
Scenario 1	0.155895665	2688	419.047548			
Scenario 2	0.155895665	2688	419.047548			
Scenario 3	0.155895665	2688	419.047548			
Scenario 4	0.155895665	2688	419.047548			
Scenario 5	0.155895665	2688	419.047548			
Scenario 6	0.155895665	2688	419.047548			

	Bi-LED Calculations						
	Current Draw (mA)	Time (hours)	Electric Power Over Time (mAh)				
Scenario 1	0.535	0.044444444	0.023777778				
Scenario 2	0.535	0.088888889	0.047555556				
Scenario 3	0.535	0.266666667	0.142666667				
Scenario 4	0.535	0.355555556	0.190222222				
Scenario 5	0.535	0.622222222	0.332888889				
Scenario 6	0.535	1.244444444	0.665777778				

	Servo Calculations				
	Current Draw (mA)	Time (hours)	Electric Power Over Time (mAh)		
Scenario 1	0	2688	0		
Scenario 2	0.010453181	2688	28.09815		
Scenario 3	0.031359542	2688	84.29445		
Scenario 4	0.041812723	2688	112.3926		
Scenario 5	0.073172269	2688	196.68706		
Scenario 6	0.146344539	2688	393.37412		

- Servo
 - turn 0 180 degrees
 - operate from 4 to 6 V range
 - 140 +- 50 mA current draw

- Lock
 - spring loaded
 - can be operate using key

• Bi-LED

- Green (unlocked)
- Red (battery replacement)
- 5V

Testing Plan

- Hardware
 - Rigourously test to verify Servo + Equipment performs under modest stress conditions
- Electronics
 - Mathematically verify circuit functions properly
 - Simulate circuit using computer software
 - "Eagle" software
 - Given circuit edge-values, verify individual circuits function appropriately
- Software
 - Test all edge cases with input, physically verify transmissions are secure

Prototype Information

Demonstration

Current Project Status

Task Name 🖕	Duration 🖕	Start 🖕	Finish	-	'14	Sep 21, '14	Nov 9,	'14	Dec 2	28, '14	Feb 1	5, '15	Apr
· · · · · ·	· ·	· ·			F	S S	M	Т	W	T F	S	S	M
Research and Design System	50 days	Mon 9/8/14	Fri 11/14/14]						
Sub-system Testing	24 days	Wed 10/1/14	Sat 11/1/14			[]							
System Testing	101 days	Sun 11/2/14	Fri 3/20/15										
Prove System will Function with 3 Units	20 days	Mon 11/24/14	Fri 12/19/14				C						

Proved system concept with 3 LCU's
 ○ Card swipe → Wireless Signal → Open Correct Locker

Contributions Per Person

• Computer Engineers

- Corey
 - LCU design and construction
 - Webmaster (Keeping website up to date and functional)
- Lafferty
 - MCU design and construction

 Communication (Writing up documents, taking weekly minutes, submitting various forms and

Contributions Per Person

- Electrical Engineers
 - Castek
 - Team Leader (Manage project deadlines)
 - Hardware Specialist (Design and build locking mechanism)
 - Assisted other Electrical Engineers in research and development of circuits
 - Priyank
 - Battery and Power specialist
 - Assisted other Electrical Engineers in research and development of circuits
 - Mohammad
 - PCB Design Specialist & Computer Simulation Specialist
 - Translated circuits into computer simulations for testing
 - Assisted other Electrical Engineers in research and development of circuits

Plan for next semester

Task Name 🚽	Duration 🖕	Start 🗸	Finish 🚽	'14	Sep 2	21, '14	Nov	9, '14	Dec 28	, '14	Feb 15,	'15	Apr 5, ':
				F	S	S	М	T	W T	F	S	S	M
Order Parts	17 days	Sat 12/20/14	Sun 1/11/15						[]]				
Mechanical Design	50 days	Mon 1/12/15	Fri 3/20/15						C			2	
Admin Controls and UI	35 days	Mon 1/12/15	Fri 2/27/15						C				
Implement System Security	16 days	Fri 2/27/15	Fri 3/20/15								٢	3	
Verification Testing	50 days	Mon 1/12/15	Fri 3/20/15						C			3	
System Documentation	30 days	Mon 3/23/15	Fri 5/1/15									[1

 Mechanical Design, Admin Controls, UI, Security, Power Savings, Documentation

Questions?