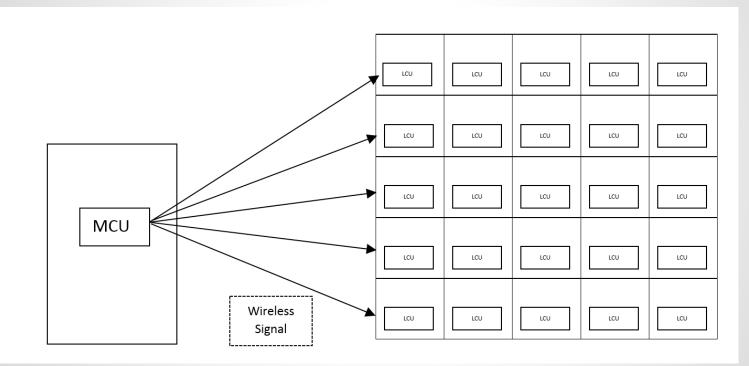
Wi-Fi Connected Locker Access System

May 15-25

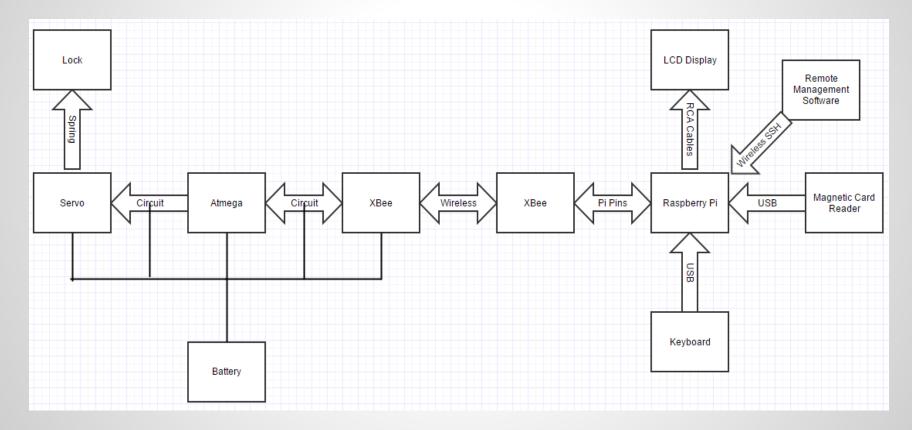
Faculty Mentor and Client: Lee Harker


Engineers Nathan Castek, Corey Cazzato, Nathan Lafferty, Priyank Patel, Mohammad Syazwan

The Problem

- Current Lockers are:
 - Difficult to manage
 - High administrative overhead
 - Must manually assign lockers
 - Must rearrange locks
 - Insecure
 - Padlocks with same lock shared year by year

The Solution


MCU: Main Control Unit

LCU: Locker Control Unit

Requirements (Simplified)

- Read student ID card, open assigned locker
- Student's without card must be able to get into locker
- LCU and MCU must be self-contained
 LCU must have no exposed cables, battery powered
- Entire system must be secure
- Allow remote administrative functionality
- Lockers must alert admins if battery is low

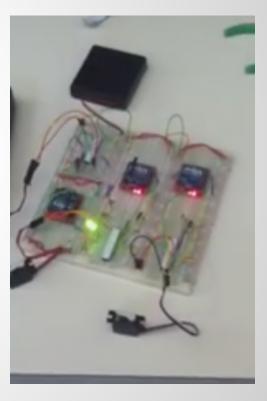
Initial Design - Concept Sketch

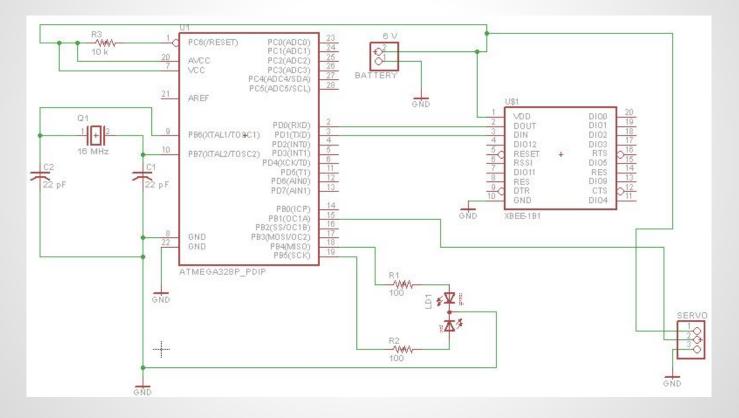
Initial Design

- Selected Major Components
- Design Functionality Decided
 - Basic MCU <--> LCU communication
 - High level circuitry
 - Idea of security
- Used hardware provided by client from previous year

Initial Design - Issues

Expensive


- Arduino vs ATMEGA
- Pricey MCU hardware
- Difficult to choose components
- Arduino was not standalone
- Size constraints not taken into consideration


http://hobbyking. com/hobbyking/store/__23767__kingduino_uno_atmel_atmega_328_ pu.html

Design - Version 1.0

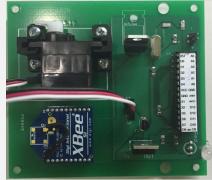
- Prototype as of 12/31/14
- Corrected most issues from initial design
 - Finalized Components and Batteries
 - Designed functional circuitry
 - Implemented standalone Embedded platform
- MCU <-> LCU communication defined
 - Enough to selectively open lockers
 - No dynamic communication (lockers hard-coded)
- Proof-of-concept

Design - Version 1.0 (LCU)

Hurdles - Version 1.0

- Security Leaks
 - Replay attack vulnerabilities
 - Communication not encrypted
- MCU Raspberry Pi was old
 - Not have enough USB ports
 - Slow Processor
 - Difficult to design around case

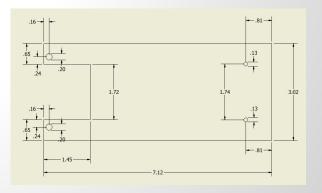
Hurdles - Version 1.0


- Power Consumption
 - Servo continually drawing current
 - Xbee and ATMEGA constantly on
- Operating Voltages

- Components had differing operating voltages
- Atmega
 - Did not know how to measure battery level

Design - Version 2.0

- Implemented power saving circuitry
 - Disconnect of the motor from the circuit
- Replaced MCU hardware
 - From model A to 2B+



- Sleep functions implemented for resource saving
- Implemented voltage regulators

Further Revisions

- Space Constraints
 - PCB Design
 - Case and mounting holes
 - New servo
- Mechanical Design
 - Support Plate
 - Lock Pull

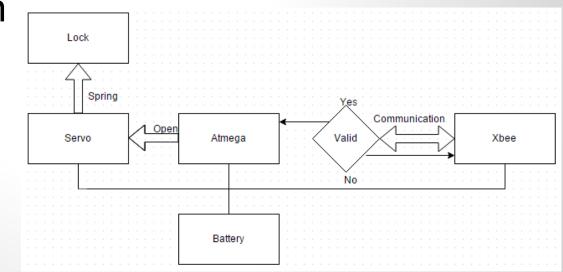
Current Design

LCU Hardware

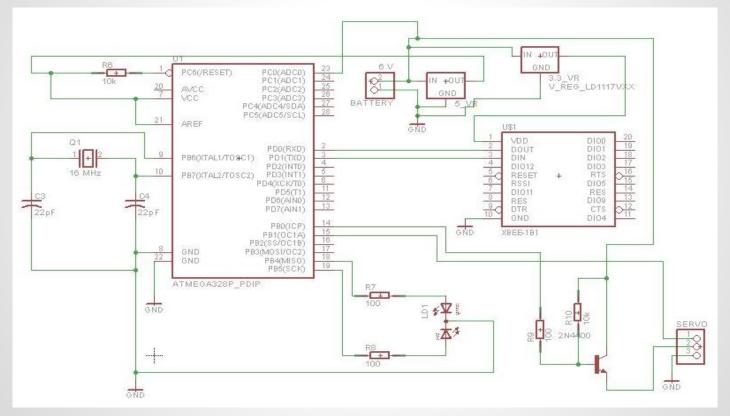
- Mounting Case
- Mounted on Locker

MCU Hardware

- Display
- Card Reader
- Keyboard
- Rasp. Pi

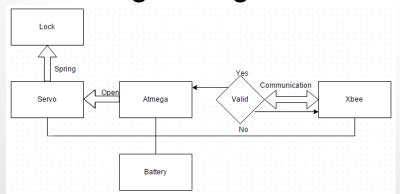

System Design (LCU)

• Brain

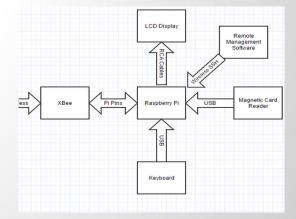

- Atmega328 processor
- Communication
 - XBee series 1

Contents

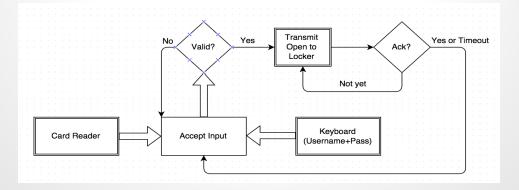
- Servo motor
- Bi-LED
- Battery pack
- Lock

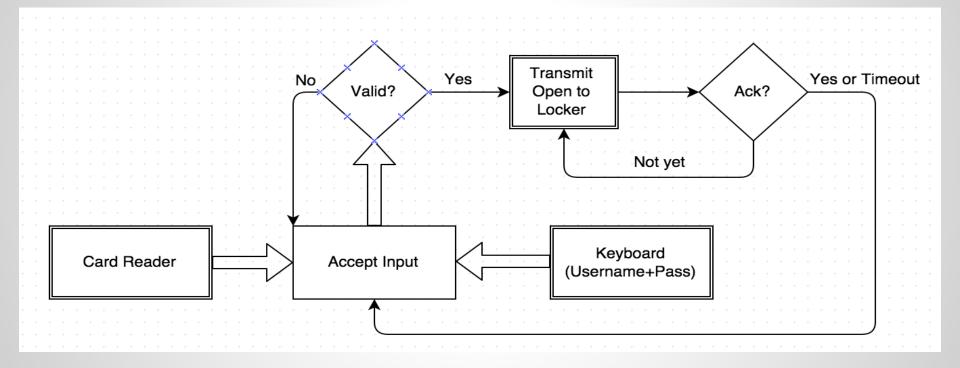


Detailed Design (LCU)

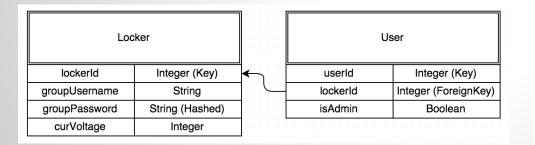

Detailed Design (LCU)

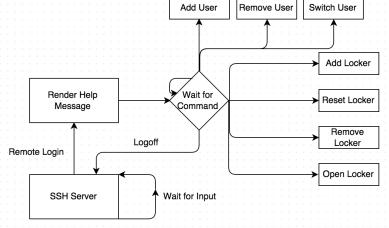
- Sleep to preserve power
 - 128 kHz oscillator 16MHz clock
 - Xbee Cycle sleep Sleeps if no RF
- Poll signals every 5 seconds
 - MCU sends a signal, signal remains in queue

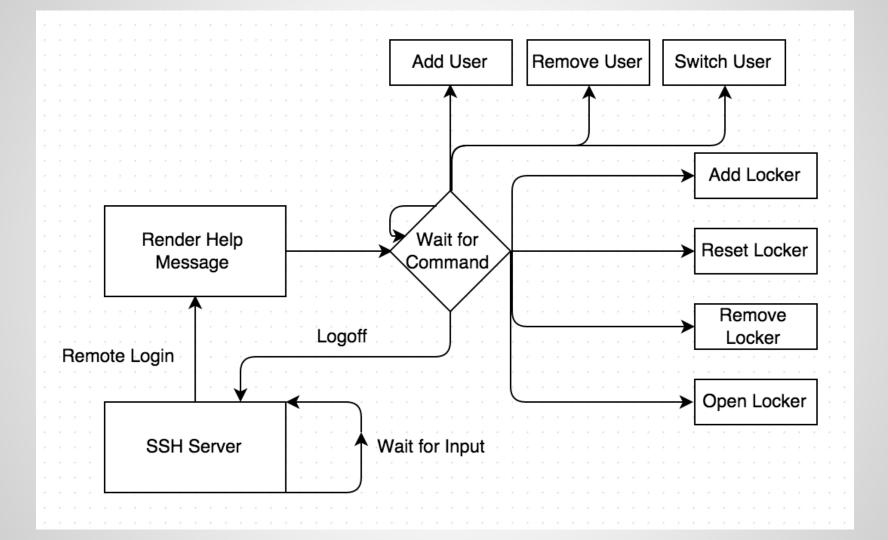

System Design (MCU)


- Brain
 - Raspberry PI Model 2B+
- Communication
 - WIFI USB Dongle & Xbee Series 1
- User Interaction
 - QWERTY Keyboard
 - LCD Display
 HDMI interface
 - USB Card Reader

Detailed Design (MCU)


- User Interaction
 - LCD renders simple form with text input
 - User may type into form with keyboard
 - Username/Password is shared amongst the group
 - Card reader accepts ISU ID Cards

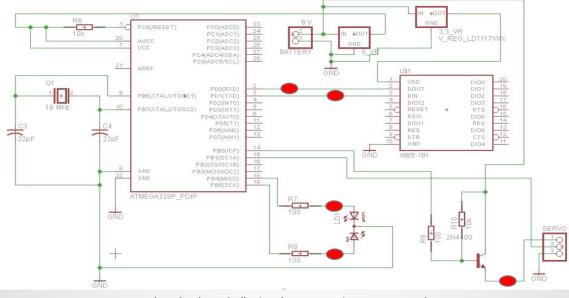




Detailed Design (MCU) (Remote)

- MCU is managed over an SSH connection
 - Username/Password combination
- A help message is displayed on login for common commands

Detailed Design (Communication)

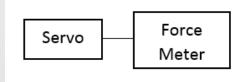

- MCU Opens LCU with OPEN command
 - Packet form: <LockerID> OPEN
 - XBee automatically encrypts data
 Vulnerable to replay attacks
- LCU transmits battery status back
 - Packet form: <LockerID> <Battery Voltage> batt
- ID and Voltage are 32 bit integer, voltage is measured in millivolts

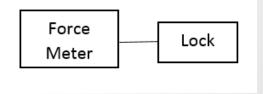
Design Verification - Electronics

- Mathematically and experimentally verify circuit functions properly
- Simulate circuit using computer software
 - Given circuit edge-values, verify individual circuits function appropriately
 - Eagle Software

Design Verification - Hardware

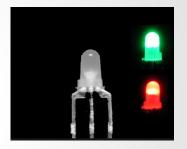
 Measure power consumption from major components (ATMEGA, LED, Servo, Xbee)


red ovals above indicate where current was measured


Design Verification - Hardware

 Ensure servo motor can provide sufficient force to unlock locking mechanism using force meter

> Test Case to Measure Force Servo Provides


Test Case to Measure Force Needed to Unlock Locker

Design Verification - Hardware

- Verify green and red LED's illuminate at correct time
- Ensure MCU to LCU communication works at the maximum distance of the room
 - Verify correct lock is unlocking

Design Verification - Software

- Verify data sent is encrypted
 - Attempt to physically capture data, print data being sent into local consoles
- Verify database updates run correctly
 - Automated testing on server startup / code compile
- Verify input edge-cases
 - Authentication cases

Demonstrations

Risks and Vulnerabilities

- Replay Attacks against LCU
 - Data encrypted, however can retransmit same bits to achieve same effect
 - Mitigate by implementing HTTPS protocols
 - Add timestamps on messages
- Social Engineering
 - Steal username/password from administrators
- Battery Usage

Why this project is awesome

- Easily Configurable
- Relatively Cheap
- Easily modified for alternative environments

• Questions?

This slide is intentionally left blank

Resource costs and Estimates

Labor

- 5 Engineers (~30hrs/week)
- Parts LCU
 - Each unit will cost around \$50 (see BOM on next slide)
- Parts MCU
 - One main control unit will cost around \$125 (see BOM on next slide)

Total cost for 30 locker system: \$1625

Bill of Materials

Locker Control Unit BOM					
Quantity	Part Number	Part Name	Price (\$)/Unit		
1	ATMEGA328-PU-ND	ATMEGA328	2.74		
1	160-1057-ND	Bi-Colored LED	0.28		
2	CF14JT100RTR-ND	100Ω Resistors	0.005		
1	CF14JT10K0TR-ND	10kΩ Resistor	0.004		
1	CTX1085-ND	16MHz Crystal	0.27		
2	BC1034CT-ND	18pF Capacitors	0.25		
2	CF14JT100RTR-ND	Resistors (servo tran)	0.005		
1	900-00005-ND	Servo	12.99		
1	2N3906-APCT-ND	PNP Transistor	0.15		
1	MC7805CT-BPMS-ND	Voltage Regulator L7805	0.35		
1	497-12822-5-ND	Voltage Regulator LD1117V33	0.63		
1	80-C330C334K5R	0.33µF Capacitor	0.49		
1	P4725-ND	0.1µF Capacitor	0.19		
1	P14373-ND	100µF Capacitor	0.15		
1	P10425TB-ND	10μF Capacitor	0.04		
1	XB24-AWI-001-ND	Xbee Series 1	19		
1	T97B440003	Lock	7.7		
AR	N/A	Wire	0		
AR	N/A	Metal Fasteners	0		
1	ID830	Battery Pack	2.95		
4	N/A	AA Alkaline Energizer M AX Batteries	0.8		
		Total Price	51.644		

Main Control Unit BOM							
Quantity	Part Name	Price (\$)/unit					
1	Raspberry PI	40					
1	Keyboard	12					
1	Card Reader	12					
1	Display	30					
1	Xbee Series 1	19					
1	Wi-Fi Chip	10					
	Total Price	\$123					

Schedule of Project

Task Name 💂	Duration 🖕	Start 🚽	Finish 🚽	'14 F	Sep 2	21, '14 S	Nov	9, '1 T	4	Dec 2	8, '14	Fe	b 15, S	, '15 S	Apr 5	5, '15 Т	\neg
Research and Design System	50 days	Mon 9/8/14	Fri 11/14/14	E]						-	_			
Sub-system Testing	24 days	Wed 10/1/14	Sat 11/1/14		C												
System Testing	101 days	Sun 11/2/14	Fri 3/20/15				C							2			
Prove System will Function with 3 Units	20 days	Mon 11/24/14	Fri 12/19/14				I		1								
Order Parts	17 days	Sat 12/20/14	Sun 1/11/15						C								
Mechanical Design	50 days	Mon 1/12/15	Fri 3/20/15							C				2			
Admin Controls and UI	35 days	Mon 1/12/15	Fri 2/27/15							C			1				
Implement System Security	16 days	Fri 2/27/15	Fri 3/20/15										[1			
Verification Testing	50 days	Mon 1/12/15	Fri 3/20/15							C				2			
System Documentation	30 days	Mon 3/23/15	Fri 5/1/15											C		1	

Power Calculations

	Scenario Definitions						
		LCU Checks					
	LCU looks for signal	Battery	Locker Opens				
	from MCU every 'x'	Status Every	Every 'x'				
		'x'					
Scenario 1	5 seconds	1/week	0/week				
Scenario 2	5 seconds	1/week	2/week				
Scenario 3	5 seconds	1/week	6/week				
Scenario 4	5 seconds	1/week	8/week				
Scenario 5	5 seconds	1/week	14/week				
Scenario 6	5 seconds	1/week	28/week				

	Scenario Calculations								
	Current Draw (mA)	Time (hours)	Electric Power Over Time (mAh)	How many academic semesters with 4AA battaries?					
Scenario 1	0.155904514	2688	419.0713347	25.77126877					
Scenario 2	1.006373505	2688	2705.131981	3.992411489					
Scenario 3	1.027328477	2688	2761.458947	3.91097612					
Scenario 4	1.037805964	2688	2789.622431	3.871491669					
Scenario 5	1.069238426	2688	2874.11289	3.757681209					
Scenario 6	1.142580835	2688	3071.257284	3.516475176					

Power Calculations (Cont)

	ATMEGA328 Calculations						
			Electric				
	Current Draw (mA)	Time (hours)	Power				
		rime (nours)	Over Time				
			(mAh)				
Scenario 1	3.50529E-09	2688	9.4222E-06				
Scenario 2	0.840006967	2688	2257.93873				
Scenario 3	0.840020195	2688	2257.97428				
Scenario 4	0.840026808	2688	2257.99206				
Scenario 5	0.84004665	2688	2258.04539				
Scenario 6	0.840092946	2688	2258.16984				

	Xbee Calculations						
			Electric				
	Current Draw (mA)	Time (hours)	Power				
			Over Time				
			(mAh)				
Scenario 1	0.155895665	2688	419.047548				
Scenario 2	0.155895665	2688	419.047548				
Scenario 3	0.155895665	2688	419.047548				
Scenario 4	0.155895665	2688	419.047548				
Scenario 5	0.155895665	2688	419.047548				
Scenario 6	0.155895665	2688	419.047548				

	Bi-LED Calculations					
	Current Draw (mA)	Time (hours)	Electric Power Over Time (mAh)			
Scenario 1	0.535	0.044444444	0.023777778			
Scenario 2	0.535	0.088888889	0.047555556			
Scenario 3	0.535	0.266666667	0.142666667			
Scenario 4	0.535	0.355555556	0.190222222			
Scenario 5	0.535	0.622222222	0.332888889			
Scenario 6	0.535	1.244444444	0.665777778			

	Servo Calculations						
	Current Draw (mA)	Time (hours)	Electric Power Over Time (mAh)				
Scenario 1	0	2688	0				
Scenario 2	0.010453181	2688	28.09815				
Scenario 3	0.031359542	2688	84.29445				
Scenario 4	0.041812723	2688	112.3926				
Scenario 5	0.073172269	2688	196.68706				
Scenario 6	0.146344539	2688	393.37412				